由于极大数量的参数和评估标准和再现性,机器学习长期以来被视为黑盒子,用于预测燃烧化学动力学和缺乏评估标准和再现性。目前的工作旨在了解关于深度神经网络(DNN)方法的两个基本问题:DNN需要的数据以及DNN方法的一般数据。采样和预处理确定DNN训练数据集,进一步影响DNN预测能力。目前的工作建议使用Box-Cox转换(BCT)来预处理燃烧数据。此外,这项工作比较了在没有预处理的情况下进行了不同的采样方法,包括蒙特卡罗方法,歧管采样,生成神经网络方法(Cycle-GaN)和新提出的多尺度采样。我们的研究结果表明,通过歧管数据训练的DNN可以以有限的配置捕获化学动力学,但不能对扰动牢固,这对于与流场联系的DNN是不可避免的。蒙特卡罗和循环甘套采样可以覆盖更宽的相位空间,但不能捕获小规模的中间物种,产生差的预测结果。基于没有特定火焰仿真数据的多尺度方法的三层DNN,允许在各种场景中预测化学动力学并在时间的演变期间保持稳定。该单个DNN易于用几个CFD代码实现并在各种燃烧器中验证,包括(1)。零维自动化,(2)。一维自由传播火焰,(3)。具有三重火焰结构的二维喷射火焰,和(4)。三维湍流升降火焰。结果证明了预先训练的DNN的令人满意的准确性和泛化能力。 DNN和示例代码的FORTRAN和PYTHON版本在补充中附加了再现性。
translated by 谷歌翻译
提出了一种基于深度学习的模型减少(DeepMR)用于简化化学动力学的方法,并使用高温自动点火,完全搅拌反应器(PSR)和一维自由传播的正庚烷/空气混合物的一致性。减少机制被建模为布尔空间的优化问题,其中布尔向量,与物种对应的每个条目表示减少的机制。优化目标是最小化给定考虑到一组预选的基准量的误差的机制尺寸。 DeepMR的关键思想是使用深度神经网络(DNN)来制定优化问题中的目标函数。为了有效地探索高维布尔空间,实现了一种迭代的DNN辅助数据采样和DNN训练过程。结果表明,DNN辅助显着提高了采样效率,仅为10 ^ {34}美元的样本中选择了10 ^ 5美元的样品,以实现足够的准确性。结果证明了DNN识别关键物种的能力,合理预测机制性能降低。训练有素的DNN通过解决反向优化问题,保证了最佳减少的机制。通过比较点火延迟时间,Laminar火焰速度,PSR的温度,得到的骨骼机制具有更少的物种(45种),但与通过路径通量分析(PFA)方法获得的骨骼机制(56种)相同的精度水平。另外,如果仅考虑大气,近化学计量条件(0.6和1.2之间的等效比),则骨骼机构可以进一步减少到28种。 DeepMR提供了一种进行模型减少的创新方法,并演示了燃烧区域中数据驱动方法的巨大潜力。
translated by 谷歌翻译
辐射场的最新进展可以使静态或动态3D场景的影照相渲染,但仍然不支持用于场景操纵或动画的显式变形。在本文中,我们提出了一种可以实现辐射场的新类型变形的方法:自由形式的辐射场磁场变形。我们使用一个三角形的网格,该网格封闭了称为笼子作为接口的前景对象,通过操纵笼顶点,我们的方法可以使辐射场的自由形式变形。我们方法的核心是基于笼子的变形,通常用于网格变形。我们提出了一种新颖的公式,以将其扩展到辐射场,该公式将采样点的位置和视图方向映射到从变形空间到规范空间,从而实现了变形场景的渲染。合成数据集和现实世界数据集的变形结果证明了我们方法的有效性。
translated by 谷歌翻译
我们提出了一种从稀疏多视图RGB视频重建可控隐式3D人类模型的新方法。我们的方法在网格表面点上定义神经场景表示,并从人体网格的表面签名距离。我们识别出一种无法区分的问题,当3D空间中的点映射到其最近的网格上的最近的表面点时出现的问题,用于学习表面对齐的神经场景表示。要解决此问题,我们将使用与修改的顶点正常的重心插值提出将点投影到网状表面上。与Zju-Mocap和Human3.6m数据集的实验表明,我们的方法在比现有方法的新颖性和新型姿态合成中实现了更高的质量。我们还表明,我们的方法很容易支持身体形状和衣服的控制。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译